

PSEN enc sincos/HTL

PILZ
THE SPIRIT OF SAFETY

- ▶ PSEN sensor technology

This document is the original document.

All rights to this documentation are reserved by Pilz GmbH & Co. KG. Copies may be made for the user's internal purposes. Suggestions and comments for improving this documentation will be gratefully received.

Source code from third-party manufacturers or open source software has been used for some components. The relevant licence information is available on the Internet on the Pilz homepage.

Pilz®, PIT®, PMI®, PNOZ®, Primo®, PSEN®, PSS®, PVIS®, SafetyBUS p®, SafetyEYE®, SafetyNET p®, the spirit of safety® are registered and protected trademarks of Pilz GmbH & Co. KG in some countries.

SD means Secure Digital

Contents

Contents	2
1 General information	4
1.1 Applicability	4
1.2 Abbreviations and terms used	5
1.3 General functional description	6
1.3.1 Main features	7
1.3.1.1 PSEN enc sincos 4096 hs, PSEN enc sincos 4096 ss	7
1.3.1.2 PSEN enc HTL 1024 ss, PSEN enc HTL 1024 hs	7
1.3.2 Principle of the safety function	7
2 Basic safety information	8
2.1 Definition of symbols and notes	8
2.2 General risks when using the product	9
2.3 Intended use	10
2.4 Non-intended use	10
2.5 Safety functions of the fail-safe evaluation device	11
2.5.1 Mandatory safety checks / measures	11
2.6 Warranty and liability	12
2.7 Organizational measures	12
2.8 Personnel selection and qualification; basic obligations	12
2.9 Safety information	13
3 Transport / Storage	15
4 Technical data	16
4.1 Safety	16
4.2 Electrical characteristics	17
4.2.1 General	17
4.2.2 Device-specific	17
4.3 Ambient conditions	18
4.4 Mechanical characteristics	19
4.4.1 Solid shaft	19
4.4.2 Hollow shaft	19
5 Mounting	20
5.1 Solid shaft	20
5.1.1 Requirements	20
5.2 Hollow shaft	22
5.2.1 Requirements	22
6 Installation / Preparation for Commissioning	24

6.1 EMC requirements	25
6.2 EMC conform wiring schemes	26
6.2.1 Connection scheme 1	26
6.2.2 Connection scheme 2	26
6.2.3 Connection scheme 3	27
6.3 Ground connection – measuring system	28
6.5 Cable specification.....	29
6.6 Permitted cable length.....	30
6.7 Pin assignment	30
6.7.1 PSEN enc SIN/COS.....	30
6.7.2 PSEN enc HTL.....	31
6.8 Connection to evaluation device.....	32
6.8.1 Evaluation device PNOZ s30.....	32
6.8.2 Evaluation device PNOZ m EF 1/2MM	32
6.8.3 Evaluation device PSSu K F EI (CV)	32
7 Incremental interface.....	33
7.1 Analogue incremental signals (SIN/COS)	34
7.2 Square-wave incremental signals (HTL)	35
8 Checklist.....	36
9	
Bestelldaten	Fe hler! Textmarke nicht definiert.
9.1 Measuring System	37
9.2 Accessories.....	37
10 EC declaration of conformity	38

1 General information

This operating manual contains the following topics:

- General functional description
- Basic safety information with declaration of the intended use
- Characteristics
- Mounting
- Installation/Commissioning
- Error causes and remedies

This document is intended for instruction. Only install and commission the product if you have read and understood this document. The document should be retained for future reference.

1.1 Applicability

This documentation is valid for the products:

- PSEN enc sincos 4096 hs
- PSEN enc sincos 4096 ss
- PSEN enc HTL 1024 ss
- PSEN enc HTL 1024 hs

It is valid until new documentation is published.

1.2 Abbreviations and terms used

DC _{avg}	Diagnostic Coverage Average diagnostic coverage
ESD	Electro Static Discharge
EU	European Union
EMC	ElectroMagnetic Compatibility
Functional safety (FS)	Part of the overall system safety, which depends on the correct functioning of safety-related systems for risk reduction. Functional safety is ensured when each safety function is executed as specified.
Fault exclusion	Compromise between the technical safety requirements and the theoretical possibility of an error occurring
HTL	High-Threshold-Logic
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
ISO	International Standard Organization
MTTF _d	Mean Time To Failure (dangerous) Mean time until dangerous failure
PFD _{av}	Average Probability of Failure on Demand Average probability of failure of a safety function with low demand
PFH	Probability of Failure per Hour Operating mode with high requirement rate or continuous demand. Probability of dangerous failure per hour.
PFH _D	Probability of a dangerous Failure per Hour Average probability of a dangerous failure per hour according to ISO 13849-1.
PL	Performance Level , according to ISO 13849-1: Discrete level, which specifies the capability of safety-related parts of a control to execute a safety function under foreseeable conditions.
SIL	Safety Integrity Level , according to IEC 62061: Four discrete levels (SIL1 to SIL4). The higher the SIL of a safety-related system, the lower the probability that the system cannot execute the required safety functions.
SIS	Safety Instrumented System : is used to protect a dangerous process and reduce the risk of an accident. Process instruments are a constituent of a Safety Instrumented System. This comprises the essential components of a complete safety-relevant process unit: Sensor, fail-safe processing unit (control, evaluation device) and actuator
STP	Shielded Twisted Pair
VDE	Verband der Elektrotechnik, Elektronik und Informationstechnik (Association for Electrical, Electronic and Information Technologies)
Repeat test (proof test)	Repetitive test to detect hidden dangerous failures in a safety-related system.

1.3 General functional description

The rotary measuring system is a safe and incremental position measuring system.

The measuring system has been designed so that it can be used in systems which require the following safety functions according to EN 61800-5-2:

- Safe Direction (SDI)
- Safe Stop 1 (SS1)
- Safe Stop 2 (SS2)
- Safe Operating Stop (SOS)
- Safely Limited Speed (SLS)
- Safe Speed Range (SSR)
- Safe Speed Monitor (SSM)
- Safely-Limited Acceleration (SLA)
- Safe Acceleration Range (SAR)
- Safely-Limited Position (SLP)
- Safely-Limited Increment (SLI)
- Safe Cam (SCA)

The measuring system as a sensor is always part of a safety chain.

The following shaft designs can be used for the mechanical coupling:

- Solid shaft
- Hollow shaft

Depending on the safety functions safety-related differences arise:

- SIL3/PLe/Cat.3, in conjunction with velocity oriented safety functions
- SIL2/PLd/Cat.3, in conjunction with positioning oriented safety functions

1.3.1 Main features

The entire system electronics has a discrete design. Neither microcontrollers nor programmable logic elements are contained in the system electronics. There is no interpolation or signal multiplexing. All signal lines are led separately within the electronics.

1.3.1.1 PSEN enc sincos 4096 hs, PSEN enc sincos 4096 ss

Incremental interface with sinusoidal output signals A, /A, B, /B, Z, /Z; output level 1 Vss.

The safety-evaluated measuring system is designed for the implementation of safety-related functions in relation to speed and direction of rotation. In the downstream fail-safe evaluation device an ideal error detection also occurs through evaluation of the magnitude "SIN(x)² + COS(x)² = 1".

The Z-, /Z-signals are not evaluated from a safety viewpoint and may not be used for safety-oriented purposes.

1.3.1.2 PSEN enc HTL 1024 ss, PSEN enc HTL 1024 hs

Incremental interface with digital square-wave output signals A, /A, B, /B, Z, /Z; output level in HTL logic.

The safety-evaluated measuring system is designed for the implementation of safety-related functions in relation to speed and direction of rotation.

An internal signal monitor constantly checks the magnitude "SIN(x)² + COS(x)² = 1". Safety-relevant errors are indicated by switching of the signal outputs to high impedance. The Z-, /Z-signals are not evaluated from a safety viewpoint and may not be used for safety-oriented purposes.

1.3.2 Principle of the safety function

System safety results when:

- the scanning channel is single fault safe thanks to its own diagnostic measures and circuit measures
- the evaluation device checks that the received incremental data meet the expected tolerance window according to the application.
- for PSEN enc sincos the evaluation device also checks the magnitude SIN(x)² + COS(x)² = 1; if the result is outside the tolerance range, the incremental data must be evaluated as unsafe. In this way the control achieves an ideal error detection.
- when errors are detected the evaluation device introduces appropriate safety measures defined by the system manufacturer
- the system manufacturer ensures, through correct mounting of the measuring system, that the measuring system is always driven by the axis to be measured and is not overloaded. A fault exclusion is required for mounting the measuring system to the drive function.
- the system manufacturer carries out a proven test during commissioning
- the downstream fail-safe evaluation device evaluates the measuring system differentially

2 Basic safety information

2.1 Definition of symbols and notes

DANGER!

This warning must be heeded! It warns of a hazardous situation that poses an immediate threat of serious injury and death and indicates preventive measures that can be taken.

WARNING!

This warning must be heeded! It warns of a hazardous situation that could lead to serious injury and death and indicates preventive measures that can be taken.

CAUTION!

This refers to a hazard that can lead to a less serious or minor injury plus material damage, and also provides information on preventive measures that can be taken.

NOTICE!

This describes a situation in which the product or devices could be damaged and also provides information on preventive measures that can be taken. It also highlights areas within the text that are of particular importance.

indicates important information or features and application tips for the product used.

means that appropriate protective measures against ESD according to DIN EN 61340 5-1 Supplement 1 must be applied.

2.2 General risks when using the product

The product, hereinafter referred to as ***the measuring system***, is manufactured according to state-of-the-art technology and accepted safety rules. ***Nevertheless, non-intended use can pose a danger to life and limb of the user or third parties, or lead to impairment of the measuring system or other property!***

Only use the measuring system in perfect technical condition, paying attention to safety and dangers, and in compliance with the ***operating manual!*** Faults which could threaten safety should be eliminated without delay!

2.3 Intended use

The safety measuring system can be used for the detection of angular movement and processing of measured data for a downstream evaluation device in systems in which the **protection goals** of "Protection of speed" and "Protection of direction of movement" must be safely achieved. The complete processing chain of the safety function must then satisfy the requirements of the applied safety standard.

The safety measuring system may only be used in safety applications in conjunction with an evaluation device certified according to the applied safety standard.

The system manufacturer must check that the characteristics of the measuring system satisfy his application-specific safety requirements. The responsibility or decision regarding the use of the measuring system lies with the system manufacturer.

Intended use also includes:

- observing all instructions in this operating manual,
- observing the nameplate and any prohibition or instruction symbols on the measuring system,
- observing the operating instructions from the machine/system manufacturer,
- operating the measuring system within the limit values specified in the technical data,
- ensuring that the fail-safe evaluation device fulfils all required safety functions,
- observing and using the checklist in the appendix,
- safe mounting (form closure) of the measuring system to the driving axis, also see chapter [Mounting](#)

2.4 Non-intended use

WARNING!

Danger of death, physical injury and damage to property in case of non-intended use of the measuring system!

➤ The following areas of use are especially forbidden:

- in environments where there is an explosive atmosphere,
- for medical purposes

2.5 Safety functions of the fail-safe evaluation device

The evaluation device, to which the measuring system is connected, must perform the following safety checks.

With regard to "Single fault safety" and "Ideal error detection" please see IFA directive "GS-IFA-M21".

To enable the correct measures to be taken in the case of error, the following applies:

- **Safe state – passive, only for measuring system – PSEN enc sincos**

In passive safe state the measuring system does not output any valid sinusoidal output signals to the downstream fail-safe evaluation device. The evaluation device detects the error through evaluation of the magnitude $\text{SIN}(x)^2 + \text{COS}(x)^2 = 1$. If the result is outside the tolerance range, the incremental data are evaluated as unsafe. The downstream fail-safe evaluation device has an ideal error detection.

- **Safe state – active, only for measuring system – PSEN enc HTL**

In active safe state the signal outputs are switched to high impedance. The evaluation device detects the error via an implemented cable breakage detection.

2.5.1 Mandatory safety checks / measures

Measures for commissioning, changes	Error reaction evaluation device
Check that the desired automation task is executed as required.	STOP
Check by the evaluation device	Error reaction evaluation device
Check of incremental data according to the present automation task and safety function.	STOP
Two-channel monitoring of incremental outputs for cable breakage.	For high impedance -> STOP
Only for PSEN enc sincos Evaluation of the condition $\text{SIN}(x)^2 + \text{COS}(x)^2 = 1$. The number of checks / revolution corresponds to the number of periods/revolution. For the safety functions SDI, SS1, SS2, SOS, SSR, SSM a magnitude monitoring with DC = 90 % is required. For the SLS safety function a two-channel evaluation of the frequency from (SIN/COS) with a DC of 90 % is required.	If outside tolerance -> STOP
Only for PSEN enc HTL A cable break detection is required for the evaluation of the square pulse signals. In the safe state, the output drivers are high impedance.	If a cable break is detected -> STOP
Only for PSEN enc HTL Evaluation of the incremental data in differential mode and verification with respect to antivalence, quadrature and against phase equivalence between channels A and B	If outside tolerance -> STOP

2.6 Warranty and liability

All claims to warranty and liability will be rendered invalid if

- The product was used contrary to the purpose for which it is intended,
- Damage can be attributed to not having followed the guidelines in the operating manual,
- Operating personnel are not suitably qualified,
- Any type of modification has been made (e.g. exchanging components on the PCB boards, soldering work etc.)

2.7 Organizational measures

- The operating manual must always be kept ready-to-hand at the place of use of the measuring system.
- In addition to the operating manual the generally valid legal and other binding regulations on accident prevention and environmental protection must be observed and communicated.
- The respective applicable national, local and system-specific provisions and requirements must be observed and communicated.
- The operator is obliged to inform personnel about special operating features and requirements.
- Prior to commencing work, personnel working with the measuring system must have read and understood the chapter "Basic safety information".
- The type plate and any prohibition or instruction symbols applied on the measuring system must always be maintained in a legible state.
- Do not undertake any mechanical or electrical modifications to the measuring system, except for those expressly described in this operating manual.
- Repairs may only be undertaken by the manufacturer or a center or person authorized by the manufacturer.

2.8 Personnel selection and qualification; basic obligations

The products may only be assembled, installed, programmed, commissioned, operated, maintained and decommissioned by competent persons.

A competent person is a qualified and knowledgeable person who, because of their training, experience and current professional activity, has the specialist knowledge required. To be able to inspect, assess and operate devices, systems and machines, the person has to be informed of the state of the art and the applicable national, European and international laws, directives and standards.

It is the company's responsibility only to employ personnel who

- Are familiar with the basic regulations concerning health and safety / accident prevention,
- Have read and understood the information provided in the section entitled Safety
- Have a good knowledge of the generic and specialist standards applicable to the specific application.

2.9 Safety information

Please note:

- Only carry out wiring work or opening and closing of electrical connections with the system de-energized.
- Do not undertake any welding work if the measuring system is already wired or switched on.
- Falling below or exceeding the permissible ambient temperature limit values must be prevented through an appropriate heating/cooling measure at the place of installation.
- The measuring system must be installed so that no direct moisture can affect the measuring system.
- Suitable aeration/ventilation and heating/cooling measures must be provided at the place of installation to prevent the temperature falling below the dew point (condensation).
- Potential hazards resulting from interactions with other systems and equipment which are or will be installed in the vicinity must be checked. The user is responsible for taking appropriate measures.
- The power supply must be protected with a fuse suitable for the supply lead cross-section.
- Cables used must be suitable for the temperature range.
- A defective measuring system must not be operated.
- Make sure that the installation environment is protected from aggressive media (acids etc.)
- Avoid shocks (e.g. hammer blows) to the shaft during installation.
- Opening the measuring system is forbidden.
- When storing and operating the measuring system unused connection plugs must either be provided with a mating plug or a protective cap. The appropriate IP protection class must be selected to meet the relevant requirements.
- The type plate specifies the technical characteristics of the measuring system. If the type plate is no longer legible or if the type plate is completely missing, the measuring system must not be operated.

The measuring system contains components and assemblies susceptible to electrical discharge, which can be destroyed if incorrectly handled.

- Touching the measuring system connection contacts with the fingers must be avoided, or the relevant ESD protective measures must be applied.

Disposal

- If disposal has to be undertaken after the lifespan of the device, the applicable country-specific regulations must be observed.

3 Transport / Storage

- Shipping information
 - Do not drop the device or subject it to heavy impacts!
The device contains an optical system.
 - Use only the original packaging!
Inappropriate packaging material may cause damage to the device in transit.
- Storage
 - Storage temperature: -40 to +90 °C
 - Store in a dry place

4 Technical data

4.1 Safety

Functional safety

DIN EN 61508 part 1 to 7	Safety Integrity Level (SIL):
- 1 SDI, SS1, SS2, SOS, SLP, SLI, SCA	- 2
- 1 SLS, SSR, SSM, SLA, SAR	- 3
EN ISO 13849-1	Performance Level:
- 1 SDI, SS1, SS2, SOS, SLP, SLI, SCA	- PLd / Cat. 3
- 1 SLS, SSR, SSM, SLA, SAR	- PL e / Cat. 3

Startup time	Time between POWER-UP and safe incremental output
---------------------	---

PFH / PFH_D: "High demand" operating mode

PSEN enc sincos	$5,34 \cdot 10^{-9}$ 1/h
PSEN enc HTL	$6.57 \cdot 10^{-9}$ 1/h
Notice	Measuring system is used only in applications with high or continuous demand rate

MTTF_d

PSEN enc sincos	1558 a
PSEN enc HTL	622 a
² DC _{avg}	medium (90 %)

Internal process safety time

Overall system ≤ 1 ms

Process safety angle

Through channel-internal self-diagnosis $\pm 0.3510^\circ$, at 1024 periods;
 $\pm 0.0879^\circ$, at 4096 periods;
 in relation to the measuring system shaft

T₁, repeat test (proof test)

20 years

¹ In accordance with EN 61800-5-2

² The assessment occurred in accordance with Note 2 on Table 6 of EN ISO 13849-1

4.2 Electrical characteristics

4.2.1 General

Supply voltage	10...30 V DC according to IEC 60364-4-41, SELV/PELV
Reverse polarity protection	yes
Short-circuit protection	yes, by internal 1 A safety fuse
Overvoltage protection	yes, up to \leq 60 V DC
Power consumption without load	at 24 V DC
Analogue output signals	< 20 mA
Square-wave output signals	< 40 mA

4.2.2 Device-specific

Accuracy

Usable resolution	10 bit, 11 bit, 12 bit; depending on the device configuration
Safety-related	+ 2 bit interpolated
Functional	+ 8 bit interpolated

PSEN enc sincos

Incremental analogue output signals

Periods / revolution	4096
Incremental signals	A, /A, B, /B
Track position, electrical	90 °
Reference signals	Z, /Z, once per revolution
Output level	1 V _{ss} \pm 0.2 V at 100 Ω, differential
Output current	20 mA
Output frequency	\leq 500 KHz
Short-circuit proof	yes
Cable specification	see Cable specification

PSEN enc HTL

Incremental square-wave output signals

Pulses / revolution	1024
Incremental signals	A, /A, B, /B
Track position, electrical	90 °
Zero pulse	Z, /Z, once per revolution
Output level HTL	Push-pull, supply voltage
Output current	50 mA, per channel
Output frequency	\leq 100 KHz
Short-circuit proof	yes
Cable specification	see Cable specification

4.3 Ambient conditions

Vibration

DIN EN 60068-2-6 $\leq 100 \text{ m/s}^2$, sine 50-2000 Hz

Shock

DIN EN 60068-2-27 $\leq 1000 \text{ m/s}^2$, half sine 11 ms

EMC

Immunity to disturbance EN 61000-6-2

Transient emissions EN 61000-6-3

Working temperature

Derating Hollow shaft, > 3000 rpm $T_a = 90 - 0,0062 * (n - 3000)$ in °C

Storage temperature

-40 °...+90 °C, dry

Relative air humidity, DIN EN 60068-3-4

98 %, non-condensing

³ Protection class, DIN EN 60529

Shaft side IP 65

Housing side IP 67

³ valid with screwed-on mating connector and/or screwed-on cable gland

4.4 Mechanical characteristics

4.4.1 Solid shaft

Mechanically permissible speed	$\leq 12,000$ rpm
Electrically permissible speed	n_{electric} [rpm] = (output frequency [Hz] / no. of pulses per rev.) * 60 rpm
Bearing life	$\geq 3.9 * 10^{10}$ revolutions at
Speed	≤ 6000 rpm
Operating temperature	≤ 60 °C
Shaft load, flange + 10 mm	≤ 50 N axial, ≤ 100 N radial
Permissible angular acceleration	$\leq 10^4$ rad/s ²
Moment of inertia, typical	$4.9 * 10^{-6}$ kg m ²
Start-up torque	
at 20 °C	3.4 Ncm
at 0 °C	3.6 Ncm
at -20 °C	7.8 Ncm
at -40 °C	20 Ncm
Weight, typical	0.3...0.5 kg

4.4.2 Hollow shaft

Mechanically permissible speed	$\leq 6,000$ rpm
Note	Observe Derating for permissible ambient temperature
Electrically permissible speed	n_{electric} [rpm] = (output frequency [Hz] / no. of pulses per rev.) * 60 rpm
Shaft load, axial/radial	Own mass
Bearing life	$\geq 3.9 * 10^{10}$ revolutions at
Speed	≤ 6000 rpm
Operating temperature	≤ 60 °C
Permissible angular acceleration	$\leq 10^4$ rad/s ²
Moment of inertia, typical	$8.8 * 10^{-6}$ kg m ²
Start-up torque	
at 20 °C	3.4 Ncm
at 0 °C	3.6 Ncm
at -20 °C	3.8 Ncm
at -40 °C	16 Ncm
Runout tolerance	± 0.05 mm
Weight, typical	0.3...0.5 kg

5 Mounting

DANGER!

Danger of death, serious physical injury and/or damage to property due to deactivation of safety functions, caused by an unstable shaft drive!

- The system manufacturer must implement suitable design measures, so that the drive of the measuring system is ensured at all times through the shaft and mounting of the measuring system (fault exclusion). The specifications of **DIN EN 61800-5-2** "Adjustable speed electrical power drive systems, Safety requirements, Table D.8 – Motion and position sensors" must be observed.
- In general, the requirements and acceptance conditions for the complete system must be taken into account for mounting.
- All fastening screws must be secured against unintentional loosening.
- Use at low ambient temperatures results in increased values for the start-up torque. This fact must be taken into account for mounting, design of the shaft coupling and shaft drive.

5.1 Solid shaft

5.1.1 Requirements

As the installation situation is application-dependent, the following notes are not exhaustive.

- A suitable coupling with form closure must be used for the application. The coupling must be dimensioned so that fault exclusion is ensured for the mechanical mounting of the measuring system in accordance with DIN EN 61800-5-2, depending on the static and dynamic load cases. If this is not possible, the hazard must be incorporated into the risk assessment for the application in the form of a coupling breakage.
- The coupling manufacturer's information and installation requirements must be observed.
- In particular, you must ensure that
 - the coupling is suitable for the specified speed and the potential axial offset,
 - installation is on a grease-free shaft,
 - the coupling and the measuring system are not axially loaded,
 - the clamping screws are tightened with the torque defined by the coupling manufacturer,
 - the coupling screws are secured against unintentional loosening.
- Axial slipping of the measuring system on the drive shaft must be prevented by the coupling fixing, see Figure 1, (1).

➤ Radial slipping (slip) of the measuring system on the drive shaft must be prevented by means of form closure by using a parallel key / groove combination (Figure 1, (2)); a coupling with groove must be used for this purpose.

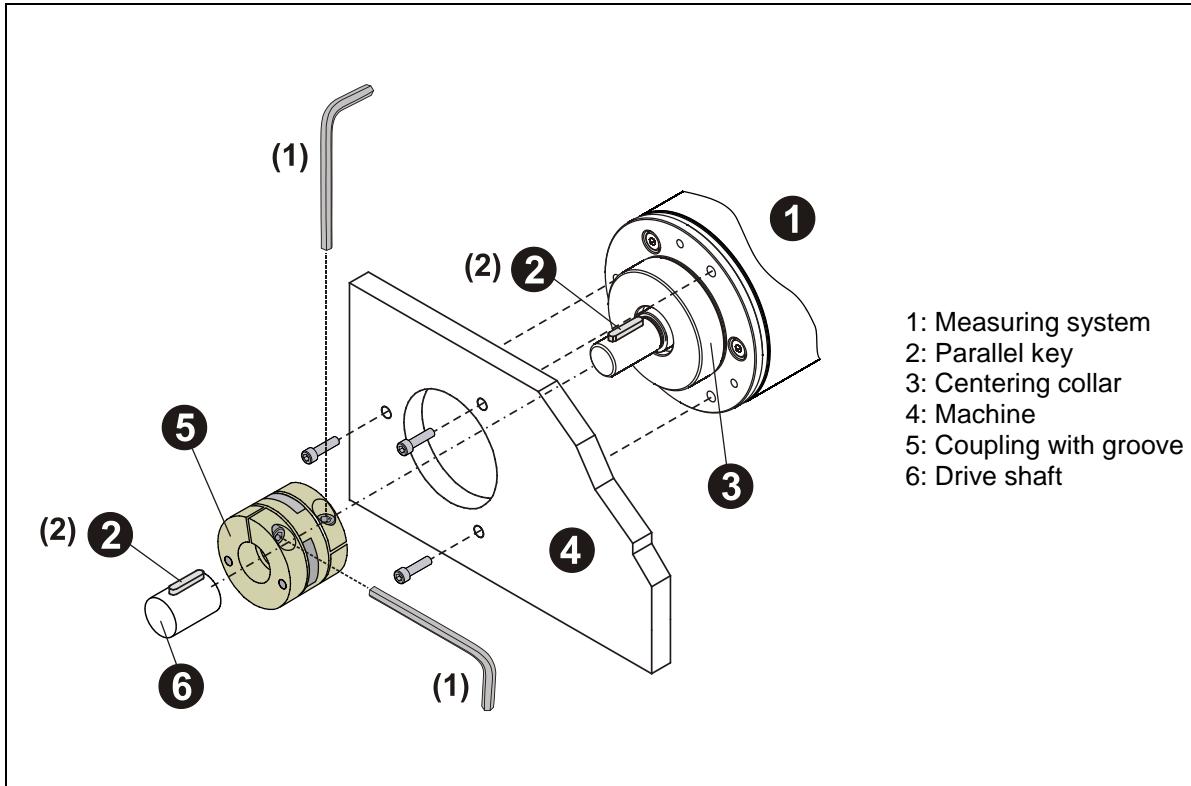


Figure 1: Flange mounting

5.2 Hollow shaft

5.2.1 Requirements

As the installation situation is application-dependent, the following notes are not exhaustive.

- The measuring system must be installed on a grease-free shaft.
- Axial slipping of the measuring system on the drive shaft must be prevented by the fixing of the clamping ring, see Figure 3.
- Further measures may be required to prevent axial slipping of the measuring system.
- The clamping of the measuring system must not be axially loaded.
- The screw of the clamping ring must be tightened with 3 Nm using a torque wrench.
- The screw must be secured against unintentional loosening.
- Radial slipping of the measuring system on the drive shaft must be prevented by means of form closure, using a parallel key / groove combination; the measuring system must be fixed on the drive shaft using a dowel pin, see Figure 2. The dowel pin must extend at least 4 mm into the groove insertion.

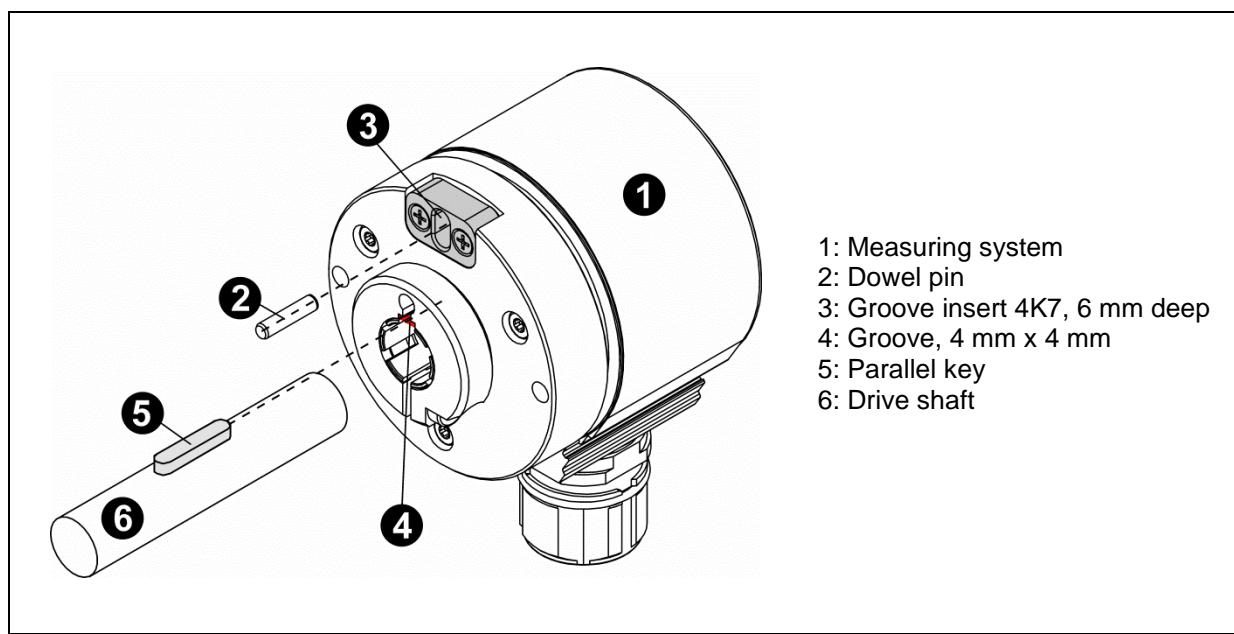


Figure 2: Form closure

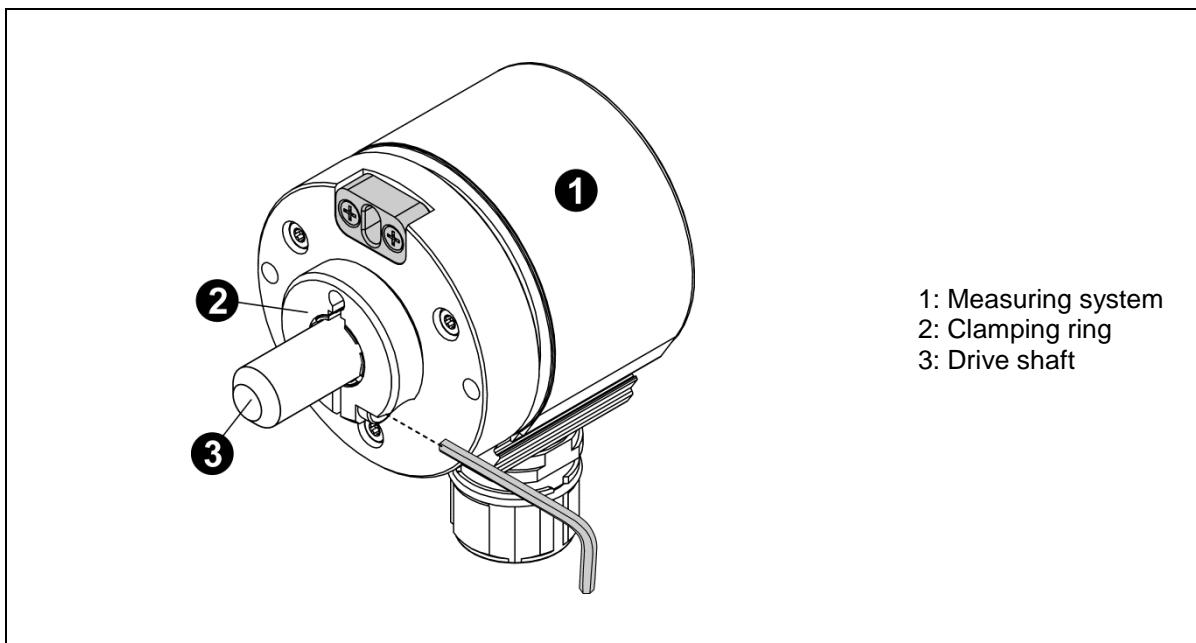


Figure 3: Friction locking

Figure 4: Requirements for the shaft mounting, example with shaft Ø 12 H7

6 Installation / Preparation for Commissioning

6.1 Notes for PSEN enc sincos

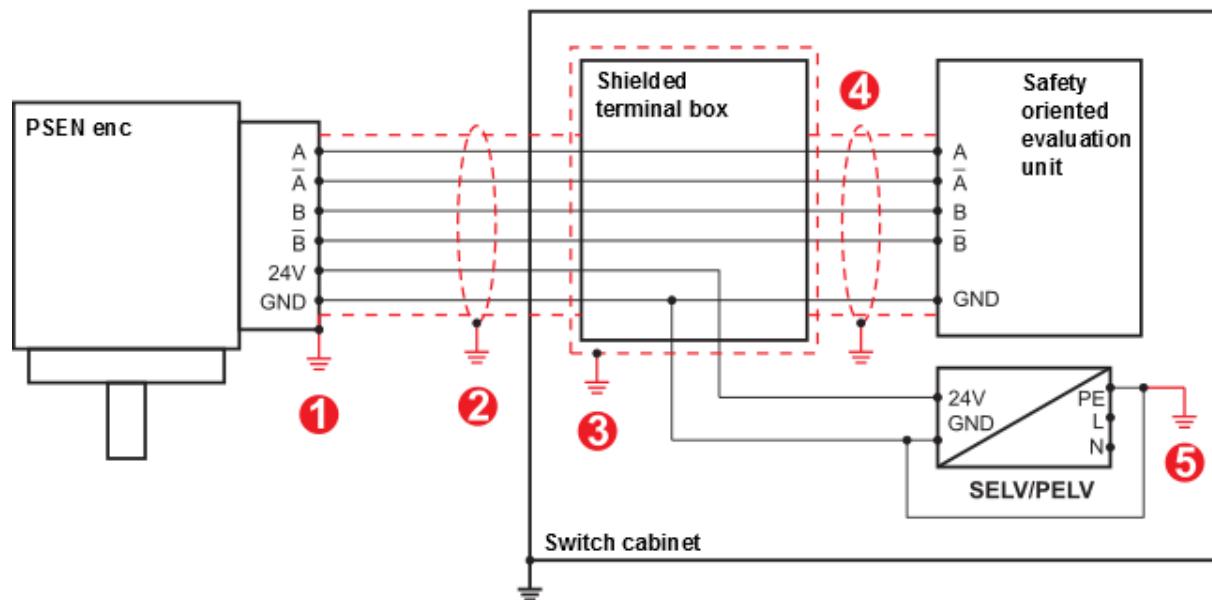
WARNING!***Loss of the safety function by overvoltage!***

- Overvoltages >7 V at the outputs A, /A, B, /B, Z or /Z can put the safety function out of operation. This may cause serious injury and death.
If accidentally an overvoltage of >7 V DC was applied to the outputs A, /A, B, /B, Z or /Z it is necessary to
 - immediately decommission the measuring system and
 - to send the measuring system to Pilz for testing, together with the information why or how the overvoltage occurred.

WARNING!***Loss of the safety function by short across contacts!***

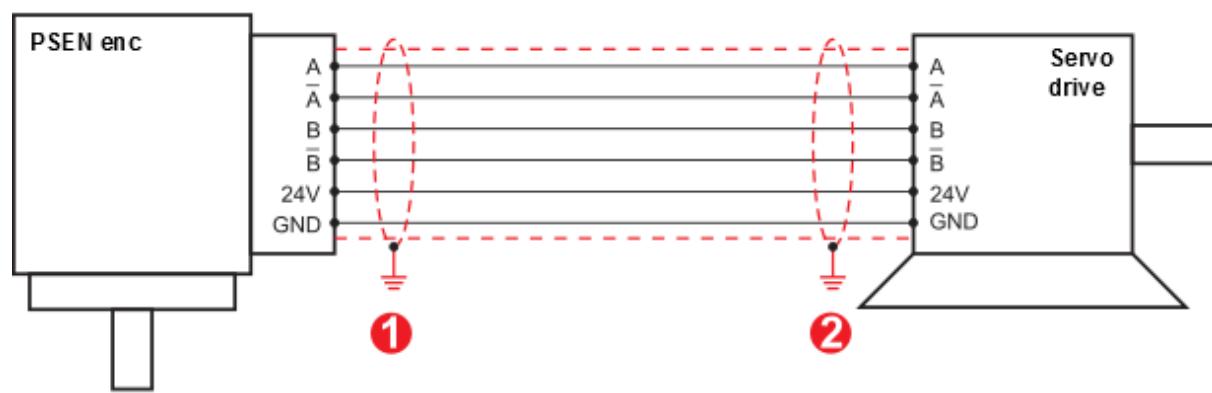
- Shorts across the connection lines can put the safety function out of order. This may cause serious injury and death.
 - To prevent short circuits, the cable must be laid permanently (fixed) and protected against external damage, for example, using a cable duct or an armoured conduit.
 - If a cable is damaged, the measuring system must be decommissioned immediately.

6.2 EMC requirements

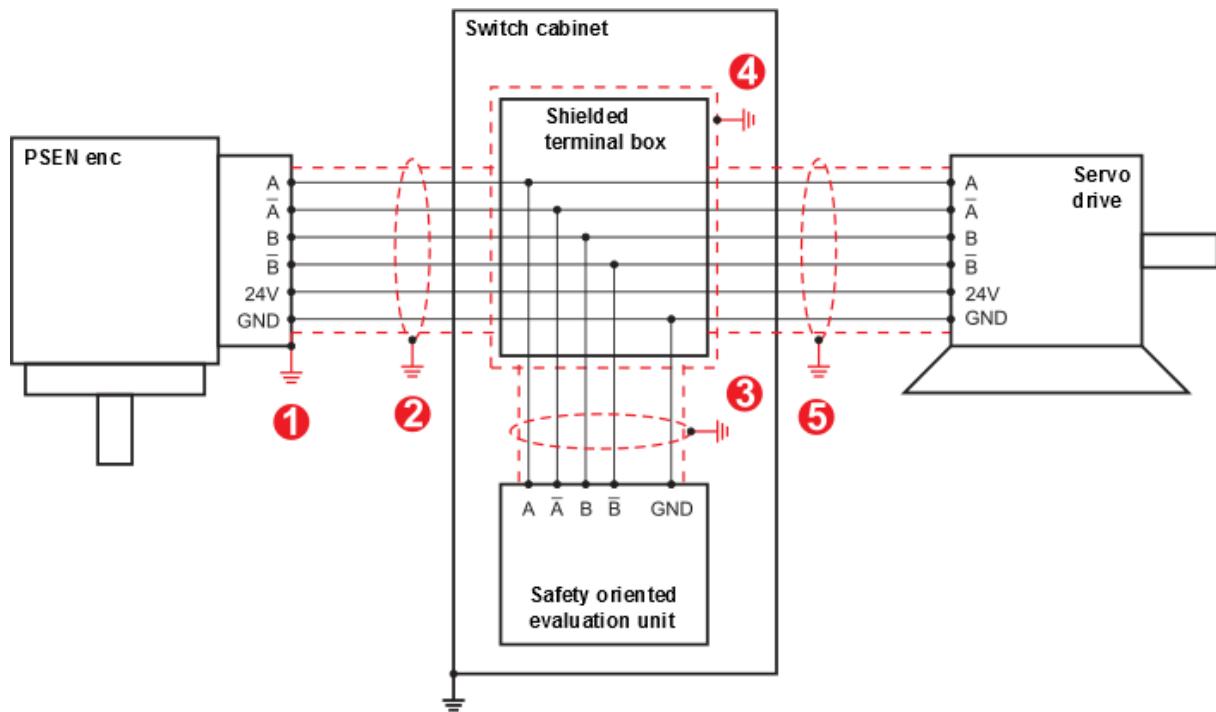

WARNING!

Deactivation of the safety function due to radiated or conducted interference sources!

- Radiated interference sources due to radiophones, lightning strikes in networks, mobile phones and emissions from individual devices can cause malfunctions in the measuring system.
- Conducted interference sources in particular, such as frequency-controlled drives (system perturbations), have a negative effect on the function of the measuring system.
 - The 24 V power supplies used must fulfil the requirements according to IEC 60364-4-41 SELV/PELV.
 - The shielding effect of cables must also be guaranteed after installation (bending radii!) and after connector changes. In cases of doubt, use more flexible and more reliable cables.
 - A 5-wire cable with a PE-conductor isolated from the N-conductor (so-called TN network) is recommended for the drive/motor cabling. This will largely prevent equipotential bonding currents and the development of interference.
 - A shielded and stranded data cable must be used to ensure high electromagnetic interference stability of the system. The shielding should be connected with low resistance to protective ground using large shield clips **at both ends**. The shielding should be grounded **in the switch cabinet only** if the machine ground is heavily contaminated with interference towards the switch cabinet ground.
 - Equipotential bonding measures must be provided for the complete processing chain of the system. Compensating currents due to potential differences across the shield to the measuring system must be avoided in particular.
 - Power and signal cables must be laid separately. During installation observe the national safety and installation guidelines for data and energy cables.
 - Observe the manufacturer's instructions for the installation of converters and for shielding power cables between frequency converter and motor.
 - Ensure adequate dimensioning of the energy supply.
 - Separation or delimitation of the measuring system from potential jammers.
 - Provide the use of filters.
 - Observe requirements for external and internal lightning protection.
 - To ensure safe and fault-free operation, the pertinent standards and directives must be observed. In particular, the applicable EMC directive and the shielding and grounding directives must be observed!
 - Upon completion of installation, a visual inspection with report should be carried out.


6.3 EMC conform wiring schemes

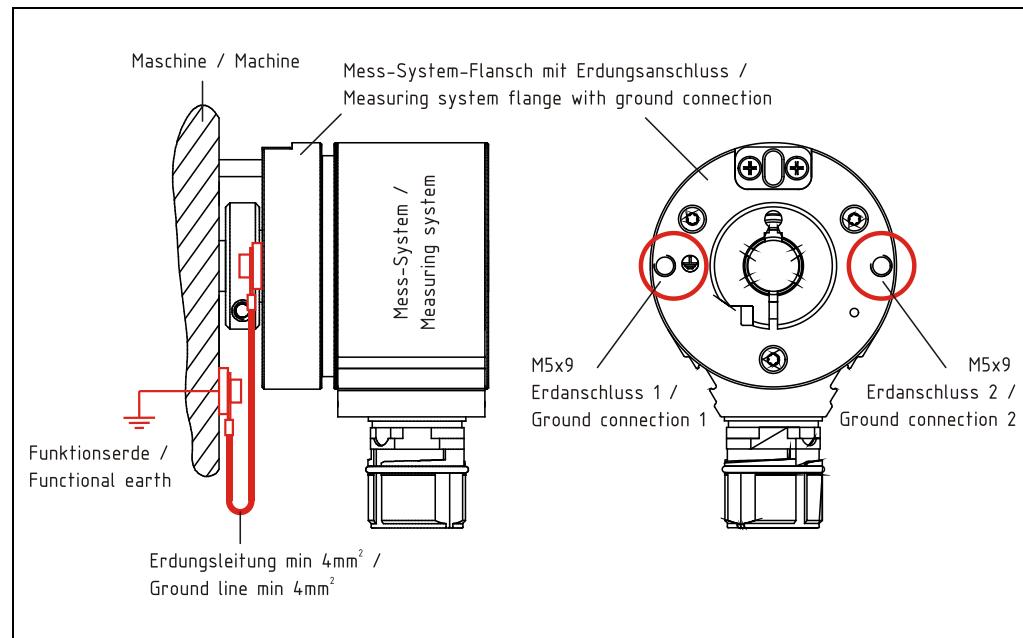
6.3.1 Connection scheme 1


- 1x Ground connection (connection possibilities **1**, **2**, **3**, **4** or **5**)
- Avoid ground loops
- Connect all shields double-sided
- Shielding must not be interrupted
- Twisted pair wires (A,/A), (B,/B)

6.3.2 Connection scheme 2

- 1x Ground connection (connection possibilities **1** or **2**)
- Avoid ground loops
- Connect all shields double-sided
- Shielding must not be interrupted
- Twisted pair wires (A,/A), (B,/B)

6.3.3 Connection scheme 3



- 1x Ground connection (connection possibilities ①, ②, ③, ④ or ⑤)
- Avoid ground loops
- Connect all shields double-sided
- Shielding must not be interrupted
- Twisted pair wires (A./A), (B./B)

6.4 Ground connection – measuring system

In principle, it is recommended that the ground connection of the measuring system has a good conductive connection to the functional earth of the machine.

This particularly applies to measuring systems with hollow or blind shaft at which the functional earth of the machine to the measuring system should be connected e.g. by cable eyes and a cable with min. 4 mm² (not contained in the extent of supply). For this purpose, corresponding thread drillings are available in the measuring system flange.

Figure 5: Ground connection – measuring system

6.5 Cable specification

Analogue incremental signals (SIN/COS)

Signal	Description
Supply	Min. 0.34 mm ² and shielded, 0.5 mm ² recommended. Generally the cable cross-section must be matched to the cable length.
A, /A	
B, /B	
⁴ Z, /Z	Min. 0.14 mm ² and shielded, 0.25 mm ² recommended. However, to ensure the signal quality and to minimize possible environmental influences, we recommend twisting each signal pair (±).

Square-wave incremental signals (HTL)

Signal	Description
Supply	Min. 0.34 mm ² and shielded, 0.5 mm ² recommended. Generally the cable cross-section must be matched to the cable length.
A, /A	
B, /B	
⁴ Z, /Z	Min. 0.14 mm ² and shielded, 0.25 mm ² recommended. However, to ensure the signal quality and to minimize possible environmental influences, we recommend twisting each signal pair (±).

⁴ optional, the Z, /Z-signal is not evaluated from a safety viewpoint

6.6 Permitted cable length

The permissible cable length at the transmission of incremental signals depends on the output frequency, the applied supply voltage and the ambient temperature of the measuring system. With Pilz cables up to 30 m, no restrictions are to be taken into account with regard to the output frequency, the supply voltage and the ambient temperature. When longer cables are used, there may be restrictions.

6.7 Pin assignment

6.7.1 PSEN enc SIN/COS

Pin	Assignment	Description	Level	Driver	NC	Colour
1	A	Track A	Sinus 1Vss			white
2	/A	Track A inverted	Sinus 1Vss			brown
3	not connected					
4	B	Track B	Sinus 1Vss			yellow
5	/B	Track B inverted	Sinus 1Vss			gray
6	not connected					
7	Z	Track Z	Sinus 1Vss			blue
8	/Z	Track Z inverted	Sinus 1Vss			red
9	not connected					
10	not connected					
11	UB	Supply voltage	10 - 30 V			gray/pink
12	GND	Ground	0 V			red/blue

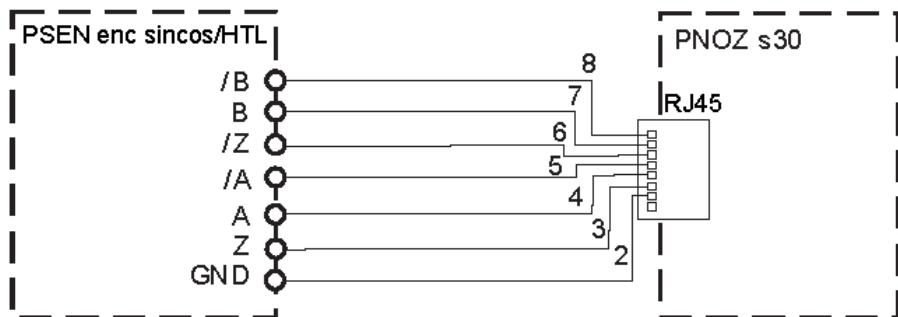
WARNING!

Short-circuits, voltage peaks, etc. can cause operating failures and uncontrolled operating states, as well as serious personal injuries and damage to property.

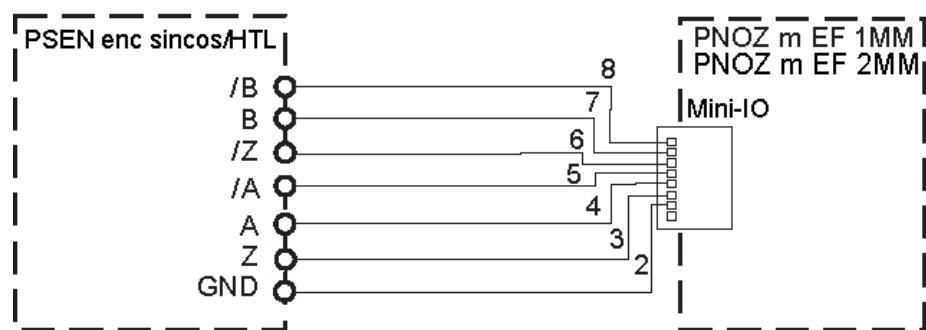
De-energize the system before carrying out wiring work or opening and closing electrical connections!

6.7.2 PSEN enc HTL

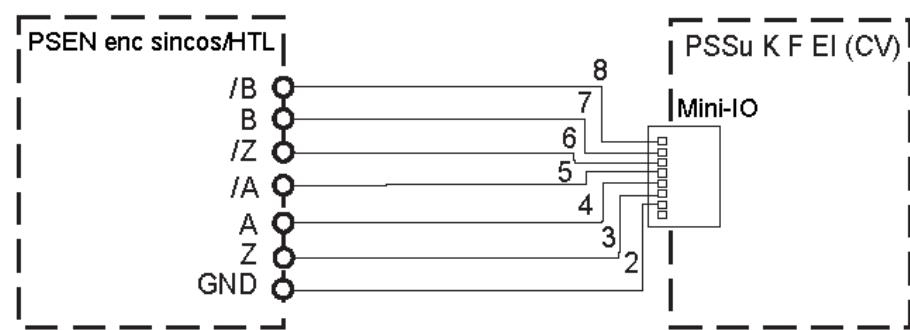
Pin	Assignment	Description	Level	Driver	NC	Color
1	A	Track A	10 - 30 V	HTL		white
2	/A	Track A inverted	10 - 30 V	HTL		brown
3	not connected					
4	B	Track B	10 - 30 V	HTL		yellow
5	/B	Track B inverted	10 - 30 V	HTL		gray
6	not connected					
7	Z	Track Z	10 - 30 V	HTL		blue
8	/Z	Track Z inverted	10 - 30 V	HTL		red
9	not connected					
10	not connected					
11	UB	Supply voltage	10 - 30 V			gray/pink
12	GND	Ground	0 V			red/blue


WARNING!

Short-circuits, voltage peaks, etc. can cause operating failures and uncontrolled operating states, as well as serious personal injuries and damage to property.


De-energize the system before carrying out wiring work or opening and closing electrical connections!

6.8 Connection to evaluation device


6.8.1 Evaluation device PNOZ s30

6.8.2 Evaluation device PNOZ m EF 1/2MM

6.8.3 Evaluation device PSSu K F EI (CV)

7 Incremental interface

CAUTION!

Danger of damage to subsequent electronics due to overvoltages caused by a missing ground reference point!

- If the ground reference point is completely missing, e.g. 0 V of the power supply not connected, voltages equal to the supply voltage can occur at the outputs of this interface.
 - It must be ensured that a ground reference point is present at all times,
 - or the system operator must provide appropriate protective mechanisms for the subsequent electronics.
- If the input voltage exceeds 30 V, these voltages occur accordingly at the HTL outputs. This can lead to damage of the output or input circuit of the downstream evaluation device.

The measuring system acquires the angular information from the connected process via the rotation of the shaft. A pulse disk is fixed to the shaft; this acquires the angular increments with a defined number of periods per revolution. A scanning unit with integrated optoelectronics generates electrical signals and outputs signal periods, which can be processed in a signal conditioner afterwards.

The resolution of the measuring system is defined by the number of light/dark segments (pulse number per revolution) on the pulse disk. A signal sequence of e.g. 1024 periods is output during one revolution. To evaluate the counting direction, a 2nd signal sequence with a 90° phase offset is output for the evaluation device.

The counter of an external evaluation device can be reset with an additional zero pulse, and the mechanics - evaluation device reference point can thus be defined.

7.1 Analogue incremental signals (SIN/COS)

Measuring the signals against 0 V gives the following signal curve:

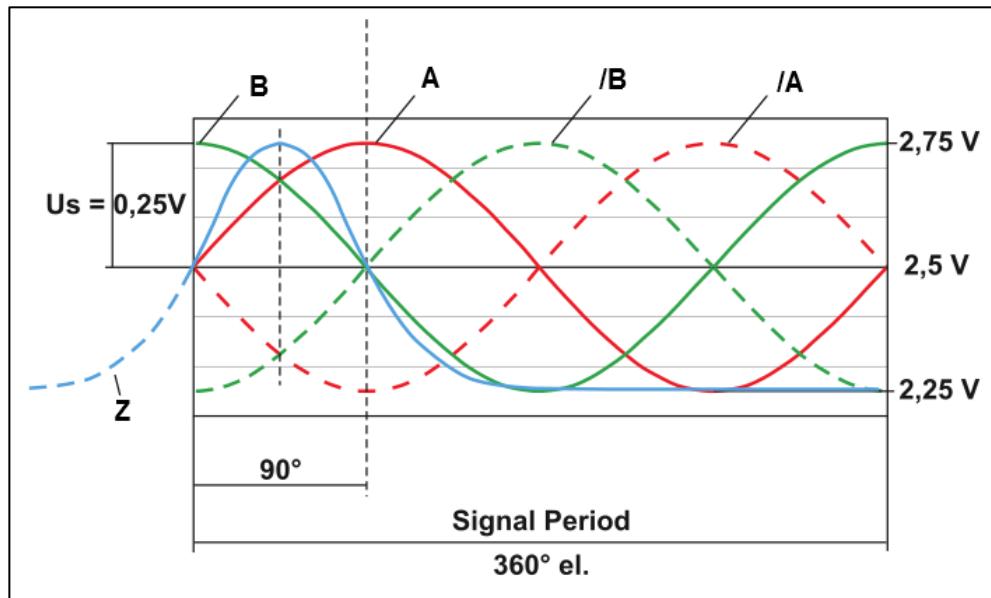


Figure 6: Signal curve with clockwise direction of rotation looking at the flange connection

Differential measurement of the signals gives the following signal curve:

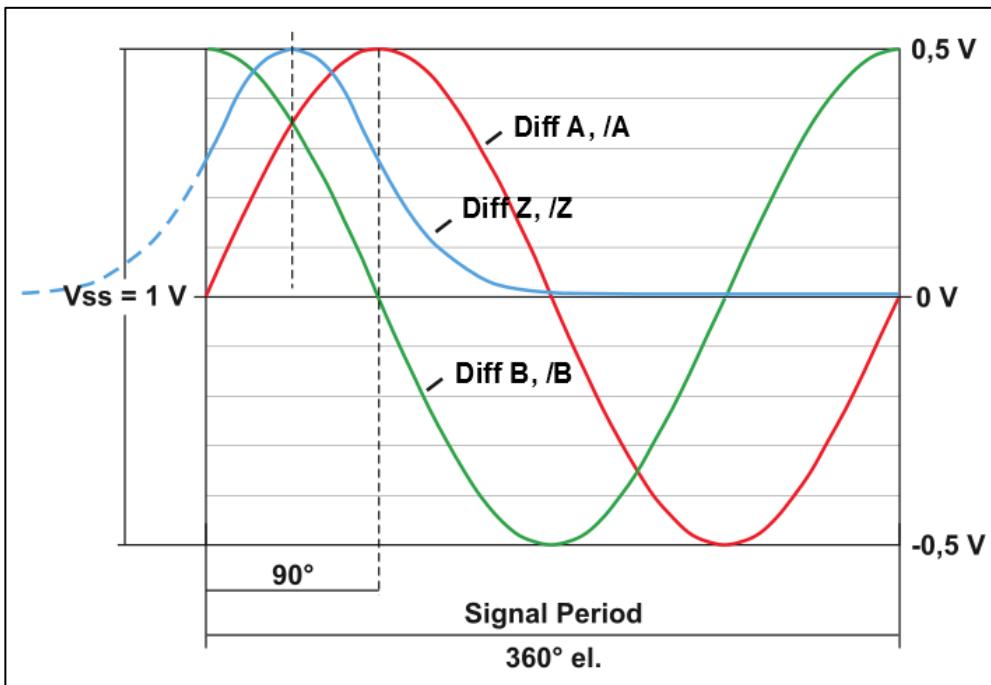


Figure 7: Signal curve with clockwise direction of rotation looking at the flange connection

7.2 Square-wave incremental signals (HTL)

The output levels are also specified by the factory setting.

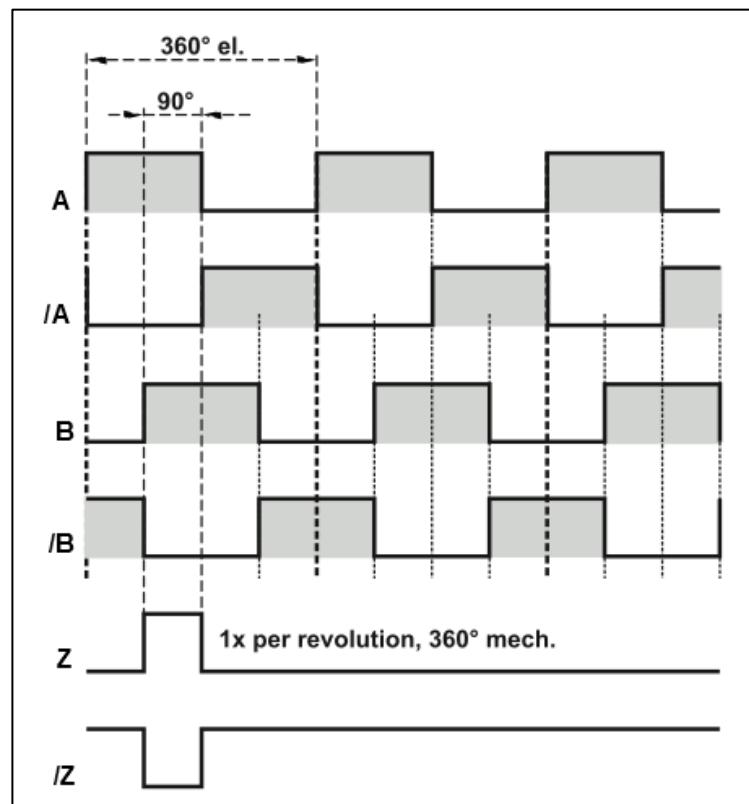


Figure 8: Signal curve with clockwise direction of rotation looking at the flange connection

8 Checklist

We recommend that you work through the checklist during commissioning and when replacing the measuring system and store it as part of the overall system documentation.

Documentation basis	Date	Edited	Checked

Sub-item	To note	Can be found under	yes
Check that the measuring system can be used for the present automation task on the basis of the specified safety requirements	<ul style="list-style-type: none"> Intended use Safety functions of the fail-safe evaluation device <p>Compliance with all technical data</p>	<ul style="list-style-type: none"> Intended use Safety functions of the fail-safe evaluation device Technical Data 	<input type="checkbox"/>
Fulfilment of the installation requirements	<ul style="list-style-type: none"> Connection of the measuring system - shaft to the drive must be designed as form closure The coupling to the drive must be over-dimensioned in accordance with DIN EN 61800-5-2 	<ul style="list-style-type: none"> Mounting 	<input type="checkbox"/>
Voltage supply requirement	<ul style="list-style-type: none"> The power supply used must meet the requirements of SELV/PELV (IEC 60364-4-41) 	<ul style="list-style-type: none"> Electrical characteristics EMC requirements 	<input type="checkbox"/>
Correct electrical installation (shielding)	<ul style="list-style-type: none"> Observance of basic rules for installation Observance of wiring standards 	<ul style="list-style-type: none"> Installation / Preparation for Commissioning 	<input type="checkbox"/>
System test after commissioning and modifications	<ul style="list-style-type: none"> During commissioning and after any modifications all affected safety functions must be checked 	<ul style="list-style-type: none"> Safety functions of the fail-safe evaluation device 	<input type="checkbox"/>
Device replacement	<ul style="list-style-type: none"> It must be ensured that the new device corresponds to the replaced device All affected safety functions must be checked 	<ul style="list-style-type: none"> Safety functions of the fail-safe evaluation device 	<input type="checkbox"/>

9 Order reference

9.1 Measuring System

Product type	Features	Order no.
PSEN enc sincos 4096 ss	4096 pulses/revolution, sin/cos, solid shaft	6Z000001
PSEN enc sincos 4096 hs	4096 pulses/revolution, sin/cos, hollow shaft	6Z000002
PSEN enc HTL 1024 ss	1024 pulses/revolution, HTL, solid shaft	6Z000003
PSEN enc HTL 1024 hs	1024 pulses/revolution, HTL, hollow shaft	6Z000004

9.2 Accessories

Product type	Features	Order no.
PSEN cable M23-12sf, 5m	Cable 5 m, M23-socket, 12-pin	6Z000005
PSEN cable M23-12sf, 10m	Cable 10 m, M23- socket, 12-pin	6Z000006
PSEN cable M23-12sf, 20m	Cable 20 m, M23- socket, 12-pin	6Z000007
PSEN cable M23-12sf, 30m	Cable 30 m, M23- socket, 12-pin	6Z000008

10 EC declaration of conformity

This product/these products meet the requirements of the directive 2006/42/EC for machinery of the European Parliament and of the Council. The complete EC Declaration of Conformity is available on the Internet at www.pilz.com/downloads.

Authorised representative: Norbert Fröhlich, Pilz GmbH & Co. KG, Felix-Wankel-Str. 2, 73760 Ostfildern, Germany

► Support

Technical support is available from Pilz round the clock.

Americas

Brazil +55 11 97569-2804
Canada +1 888 315 7459
Mexico +52 55 5572 1300
USA (toll-free) +1 877-PILZUSA (745-9872)

Asia
China +86 21 60880878-216
Japan +81 45 471-2281
South Korea +82 31 778 3300

Australia

+61 3 95600621

Europe
Austria +43 1 7986263-0
Belgium, Luxembourg +32 9 3217570
France +33 3 88104003
Germany +49 711 3409-444
Ireland +353 21 4804983
Italy, Malta +39 0362 1826711

Scandinavia

+45 74436332
Spain +34 938497433
Switzerland +41 62 88979-32
The Netherlands +31 347 320477
Turkey +90 216 5775552
United Kingdom +44 1536 462203

You can reach our international hotline on:

+49 711 3409-444
support@pilz.com

Pilz develops environmentally-friendly products using ecological materials and energy-saving technologies. Offices and production facilities are ecologically designed, environmentally-aware and energy-saving. So Pilz offers sustainability, plus the security of using energy-efficient products and environmentally-friendly solutions.

 energy saving by Pilz

 BLUE COMPETENCE
Alliance Member
Partner of the Engineering Industry
Sustainability Initiative

CIEC® CHRE® CMSE® IndurANET p® Leansafe® Master of Safety® PAS4000® PAScal® PASconfig® Pilz® PLD® PT® PLD® PT® THE SPIRIT OF SAFETY® are registered and protected trademarks of Pilz GmbH & Co. KG in some countries. We would point out that product features may vary from the details stated in this document, depending on the status at the time of publication and the scope of the equipment. We accept no responsibility for the validity, accuracy and entirety of the text and graphics presented in this information. Please contact our Technical Support if you have any questions.

We are represented internationally. Please refer to our homepage www.pilz.com for further details or contact our headquarters.

Headquarters: Pilz GmbH & Co. KG, Felix-Wankel-Straße 2, 73760 Ostfildern, Germany
Telephone: +49 711 3409-0, Telefax: +49 711 3409-133, E-Mail: info@pilz.com, Internet: www.pilz.com

PILZ
THE SPIRIT OF SAFETY